

owdy!

Welcome to the first in what I hope will be a long series of columns on Mac
programming. Creator Code aims to help all sorts of programmers, from C
to C++ to Pascal and beyond, with both simple and advanced concepts. I
love feedback, so feel free to email me at chilton@applewizards.net . Before you
do, though, stop by my website at http://www.devhq.com/ .

This month we'll be doing some relatively simple stuff: loops. We'll be doing
this in C++, and on CodeWarrior Pro 4 (IDE v3.3), though the examples
we'll list will work on several versions prior to Pro 4. I'm not one for beating
around the bush, so let's get to it.

asics of Loops

Every loop has a few things in common. Some are:

Exit Conditions — Specifically, when does the loop end? The conditions are
typically updated each time through the loop.

Statements — There'd be no point in having a loop that didn't do anything.
Statements are typically contained within curly braces (a.k.a. squigglies)
and are executed over and over as the loop dictates. With the exception of
for loops, the statement typically contains an update to the exit conditions.

Nestability — Every loop we'll discuss in this article can be nested. I'll give
you some code for a little nested loop at the end of this month's column.

o It FOR So Many Times

The For loop is used by programmers when an action or a set of actions is to
occur a set number of times — its test is a pre-loop test. For example, a
programmer who wanted to print out a list of integers from 0 to 9 could do
it using the following loop:

for (int counter = 0; counter < 10; counter++)

          cout << counter << endl;
;

The output? You guessed it:
0
1
2
:
:
8
9

To construct a for loop, it's necessary to understand just what the
statements between the parentheses are doing.

1. int counter = 10 — This sets our "counter" to 0 initially. It is important to note
that the counter's scope is limited to this for loop. Had we previously
declared counter as type int, we could simply specify (counter = 0; …).

2. counter < 10 — This is the actual test. It is performed once for each iteration
of the loop, and so long as it resolves to true, the statements of the loop are
executed. Thus, so long as "counter" is less than 10, the statement is
executed.

3. counter++ — After the statement executes, this operation is performed: it
increments our counter a single unit (from 0 to 1 and so on). Control then
reverts back to the test portion of the loop, counter < 10.

ould you DO Something For Me?

The Do loop executes once before a single test is made. This makes it an
effective loop for menus: the programmer can specify a menu of options
which will loop and display itself again if incorrect input is entered. Let's
take a look at an example:

int choice;

do

          cout << "Do you want to: " << endl;
          cout << "1 - Go to the store" << endl;
          cout << "2 - Go home" << endl;
          cout << "3 - Quit" << endl;
          cout << "Your choice: ";
          cin >> choice;
 while (choice < 1 || choice > 3);

Upon entering the loop at the do statement, the menu is printed and the
user is prompted for a choice. If they enter 1, 2, or 3, both post-loop tests
(or a compound test, here using || "or") are false and the loop ends. If the
user enters 46, however, the compound test is true, and the loop executes
again. More complex loops can be created to print out an additional
message, like "You entered incorrect input. Try again." Go ahead, think of
how? It's two lines of code:

if (choice < 1 || choice > 3)

          cout << "Try again you dummy." << endl;

HILE You're At It…

Do loops are great if you want the statement to be executed at least one
time. For loops are great for executing a statement a predetermined
number of times. While loops fill the remaining void — performing a loop a
varying number of times, including zero. Here's some code:

char user_enters;
cout << "Enter your own numbers (y or n): ";
cin >> user_enters;

while (user_enters == 'y')

          cout << "Enter the next number: ";
          cin >> next_num;
          total += next_num;

          cout << "Enter more (y or n): ";
          cin >> user_enters;

This loop is a pre-test loop: it first tests the condition (in this case, whether

the variable user_enters currently holds the value 'y'). If the test fails, the
entire block below is skipped. If it's true, the statements execute. It's
important to note that before the loop returns to the test, the condition is
updated. In this case, the user must enter 'y' again to perpetuate the loop.

esting a Few

Loops can be nested, and sometimes to great effect. Need an example? Of
course:

cout << "Now we'll enter 10 positive numbers and average them.\n";

for (int counter = 0; counter < 10; counter++)

          do
         
                    cout << "Enter number " << counter << ": ";
                    cin >> number;
          (while number < 1);

          sum += number;

ext month? I'm not sure. I'm looking forward to your feedback — send some
off to chilton@applewizards.net . Also be sure to drop by my website at
http://www.devhq.com/. Until then, happy coding.

Note: Thanks go out to Erik for jumping in at the last minute to write this
article for me. I'll be around next month for sure!

                   Chilton Webb
                      chilton@applewizards.net

  http://applewizards.net/

